You are given the root node of a binary search tree (BST) and a value val to insert into the tree. Return the root node of the BST after the insertion. It is guaranteed that the new value does not exist in the original BST.
Note: There may exist multiple valid ways for the insertion, as long as the tree remains a BST after insertion. You can return any of them.
Example 1:
Input: root = [5,3,9,1,4], val = 6
Output: [5,3,9,1,4,6]Example 2:
Input: root = [5,3,6,null,4,null,10,null,null,7], val = 9
Output: [5,3,6,null,4,null,10,null,null,7,null,null,9]Constraints:
0 <= The number of nodes in the tree <= 10,000.-100,000,000 <= val, Node.val <= 100,000,000Node.val are unique.val does not exist in the original BST.# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
if val > root.val:
root.right = self.insertIntoBST(root.right, val)
else:
root.left = self.insertIntoBST(root.left, val)
return rootWhere is the height of the given binary search tree.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
cur = root
while True:
if val > cur.val:
if not cur.right:
cur.right = TreeNode(val)
return root
cur = cur.right
else:
if not cur.left:
cur.left = TreeNode(val)
return root
cur = cur.leftWhere is the height of the given binary search tree.