You are given an integer array target. You have an integer array initial of the same size as target with all elements initially zeros.
In one operation you can choose any subarray from initial and increment each value by one.
Return the minimum number of operations to form a target array from initial.
The test cases are generated so that the answer fits in a 32-bit integer.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: target = [3,1,5,4,2,3,4,2]
Output: 9Explanation: [0,0,0,0,0,0,0,0] -> [1,1,1,1,1,1,1,1] -> [2,1,1,1,1,1,1,1] -> [3,1,1,1,1,1,1,1] -> [3,1,2,2,2,2,2,2] -> [3,1,2,2,2,3,3,2] -> [3,1,2,2,2,3,4,2] -> [3,1,3,3,2,3,4,2] -> [3,1,4,4,2,3,4,2] -> [3,1,5,4,2,3,4,2].
Example 2:
Input: target = [3,1,1,2]
Output: 4Explanation: [0,0,0,0] -> [1,1,1,1] -> [1,1,1,2] -> [2,1,1,2] -> [3,1,1,2].
Constraints:
1 <= target.length <= 100,0001 <= target[i] <= 100,000class Solution:
def minNumberOperations(self, target: List[int]) -> int:
def rec(l, r, h):
if l > r:
return 0
minIdx = l
for i in range(l + 1, r + 1):
if target[i] < target[minIdx]:
minIdx = i
res = target[minIdx] - h
return res + rec(l, minIdx - 1, target[minIdx]) + rec(minIdx + 1, r, target[minIdx])
return rec(0, len(target) - 1, 0)INF = float('inf')
class SegmentTree:
def __init__(self, A):
self.A = A[:]
self.n = len(A)
while (self.n & (self.n - 1)) != 0:
self.A.append(INF)
self.n += 1
self.tree = [0] * (2 * self.n)
self.build()
def build(self):
for i in range(self.n):
self.tree[self.n + i] = i
for j in range(self.n - 1, 0, -1):
a = self.tree[j << 1]
b = self.tree[(j << 1) | 1]
self.tree[j] = a if self.A[a] <= self.A[b] else b
def update(self, i, val):
self.A[i] = val
j = (self.n + i) >> 1
while j >= 1:
a = self.tree[j << 1]
b = self.tree[(j << 1) | 1]
self.tree[j] = a if self.A[a] <= self.A[b] else b
j >>= 1
def query(self, ql, qh):
return self._query(1, 0, self.n - 1, ql, qh)
def _query(self, node, l, h, ql, qh):
if ql > h or qh < l:
return -1
if l >= ql and h <= qh:
return self.tree[node]
mid = (l + h) >> 1
a = self._query(node << 1, l, mid, ql, qh)
b = self._query((node << 1) | 1, mid + 1, h, ql, qh)
if a == -1: return b
if b == -1: return a
return a if self.A[a] <= self.A[b] else b
class Solution:
def minNumberOperations(self, target: List[int]) -> int:
seg = SegmentTree(target)
stack = [(0, len(target) - 1, 0)]
res = 0
while stack:
l, r, h = stack.pop()
if l > r:
continue
minIdx = seg.query(l, r)
res += target[minIdx] - h
stack.append((l, minIdx - 1, target[minIdx]))
stack.append((minIdx + 1, r, target[minIdx]))
return resclass Solution:
def minNumberOperations(self, target: List[int]) -> int:
res = target[0]
for i in range(1, len(target)):
res += max(target[i] - target[i - 1], 0)
return res