You are given a triangle array, return the minimum path sum from top to bottom.
For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.
Example 1:
Input: triangle = [
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
Output: 11Explanation: The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11
Example 2:
Input: triangle = [[-1]]
Output: -1Constraints:
1 <= triangle.length <= 200triangle[0].length == 1triangle[i].length == triangle[i - 1].length + 1-10,000 <= triangle[i][j] <= 10,000Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
def dfs(row, col):
if row >= len(triangle):
return 0
return triangle[row][col] + min(dfs(row + 1, col), dfs(row + 1, col + 1))
return dfs(0, 0)class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
memo = [[0] * len(triangle[r]) for r in range(len(triangle))]
INF = float("inf")
for r in range(len(triangle)):
for c in range(len(triangle[r])):
memo[r][c] = INF
def dfs(row, col):
if row >= len(triangle):
return 0
if memo[row][col] != INF:
return memo[row][col]
memo[row][col] = triangle[row][col] + min(dfs(row + 1, col), dfs(row + 1, col + 1))
return memo[row][col]
return dfs(0, 0)class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
dp = [[0] * len(triangle[row]) for row in range(n)]
dp[-1] = triangle[-1][:]
for row in range(n - 2, -1, -1):
for col in range(len(triangle[row])):
dp[row][col] = triangle[row][col] + min(dp[row + 1][col], dp[row + 1][col + 1])
return dp[0][0]class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
dp = triangle[0][:]
for row in range(1, n):
nxtDp = [0] * len(triangle[row])
nxtDp[0] = dp[0] + triangle[row][0]
for col in range(1, len(triangle[row]) - 1):
nxtDp[col] = triangle[row][col] + min(dp[col], dp[col - 1])
nxtDp[-1] = dp[-1] + triangle[row][-1]
dp = nxtDp
return min(dp)class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
dp = triangle[-1][:]
for row in range(n - 2, -1, -1):
for col in range(len(triangle[row])):
dp[col] = triangle[row][col] + min(dp[col], dp[col + 1])
return dp[0]class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
for row in range(len(triangle) - 2, -1, -1):
for col in range(len(triangle[row])):
triangle[row][col] += min(triangle[row + 1][col], triangle[row + 1][col + 1])
return triangle[0][0]