You are given two integer arrays x and y, each of length n. You must choose three distinct indices i, j, and k such that:
x[i] != x[j]x[j] != x[k]x[k] != x[i]Your goal is to maximize the value of y[i] + y[j] + y[k] under these conditions. Return the maximum possible sum that can be obtained by choosing such a triplet of indices.
If no such triplet exists, return -1.
Example 1:
Input: x = [1,2,1,3,2], y = [5,3,4,6,2]
Output: 14Explanation:
i = 0 (x[i] = 1, y[i] = 5), j = 1 (x[j] = 2, y[j] = 3), k = 3 (x[k] = 3, y[k] = 6).x are distinct. 5 + 3 + 6 = 14 is the maximum we can obtain. Hence, the output is 14.Example 2:
Input: x = [1,2,1,2], y = [4,5,6,7]
Output: -1Explanation: There are only two distinct values in x. Hence, the output is -1.
Constraints:
3 <= x.length == y.length == 100,0001 <= x[i], y[i] <= 1,000,000class Solution:
def maxSumDistinctTriplet(self, x: List[int], y: List[int]) -> int:
mp = {}
for i in range(len(x)):
if x[i] not in mp:
mp[x[i]] = y[i]
mp[x[i]] = max(mp[x[i]], y[i])
return -1 if len(mp) < 3 else sum(sorted(list(mp.values()))[-3:])class Solution:
def maxSumDistinctTriplet(self, x: List[int], y: List[int]) -> int:
mp = {}
for xi, yi in zip(x, y):
mp[xi] = max(mp.get(xi, 0), yi)
minHeap = []
for val in mp.values():
heapq.heappush(minHeap, val)
if len(minHeap) > 3:
heapq.heappop(minHeap)
return -1 if len(minHeap) < 3 else sum(minHeap)class Solution:
def maxSumDistinctTriplet(self, x: List[int], y: List[int]) -> int:
best = [(None, float("-inf"))] * 3
for xi, yi in zip(x, y):
for i, (xj, yj) in enumerate(best):
if xi == xj:
if yi > yj:
best[i] = (xi, yi)
best.sort(key=lambda t: t[1], reverse=True)
break
else:
if yi > best[0][1]:
best = [(xi, yi), best[0], best[1]]
elif yi > best[1][1]:
best = [best[0], (xi, yi), best[1]]
elif yi > best[2][1]:
best[2] = (xi, yi)
return sum(v for _, v in best) if best[2][1] > float("-inf") else -1