There is a ball in a maze with empty spaces (represented as 0) and walls (represented as 1). The ball can go through the empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.
Given the m x n maze, the ball's start position and the destination, where start = [start_row, start_col] and destination = [destination_row, destination_col], return the shortest distance for the ball to stop at the destination. If the ball cannot stop at destination, return -1.
The distance is the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included).
You may assume that the borders of the maze are all walls (see examples).
Example 1:
Input: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [4,4]
Output: 12Explanation: One possible way is : left -> down -> left -> down -> right -> down -> right.
The length of the path is 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12.
Example 2:
Input: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [3,2]
Output: -1Explanation: There is no way for the ball to stop at the destination. Notice that you can pass through the destination but you cannot stop there.
Example 3:
Input: maze = [[0,0,0,0,0],[1,1,0,0,1],[0,0,0,0,0],[0,1,0,0,1],[0,1,0,0,0]], start = [4,3], destination = [0,1]
Output: -1Constraints:
m == maze.lengthn == maze[i].length1 <= m, n <= 100maze[i][j] is 0 or 1.start.length == 2destination.length == 20 <= start_row, destination_row < m0 <= start_col, destination_col < nclass Solution {
public int shortestDistance(int[][] maze, int[] start, int[] dest) {
int[][] distance = new int[maze.length][maze[0].length];
for (int[] row: distance)
Arrays.fill(row, Integer.MAX_VALUE);
distance[start[0]][start[1]] = 0;
dfs(maze, start, distance);
return distance[dest[0]][dest[1]] == Integer.MAX_VALUE ? -1 : distance[dest[0]][dest[1]];
}
public void dfs(int[][] maze, int[] start, int[][] distance) {
int[][] dirs={{0,1}, {0,-1}, {-1,0}, {1,0}};
for (int[] dir: dirs) {
int x = start[0] + dir[0];
int y = start[1] + dir[1];
int count = 0;
while (x >= 0 && y >= 0 && x < maze.length && y < maze[0].length && maze[x][y] == 0) {
x += dir[0];
y += dir[1];
count++;
}
if (distance[start[0]][start[1]] + count < distance[x - dir[0]][y - dir[1]]) {
distance[x - dir[0]][y - dir[1]] = distance[start[0]][start[1]] + count;
dfs(maze, new int[]{x - dir[0],y - dir[1]}, distance);
}
}
}
}Where and are the number of rows and columns in
maze.
class Solution {
public int shortestDistance(int[][] maze, int[] start, int[] dest) {
int[][] distance = new int[maze.length][maze[0].length];
for (int[] row: distance)
Arrays.fill(row, Integer.MAX_VALUE);
distance[start[0]][start[1]] = 0;
int[][] dirs={{0, 1} ,{0, -1}, {-1, 0}, {1, 0}};
Queue < int[] > queue = new LinkedList < > ();
queue.add(start);
while (!queue.isEmpty()) {
int[] s = queue.remove();
for (int[] dir: dirs) {
int x = s[0] + dir[0];
int y = s[1] + dir[1];
int count = 0;
while (x >= 0 && y >= 0 && x < maze.length && y < maze[0].length && maze[x][y] == 0) {
x += dir[0];
y += dir[1];
count++;
}
if (distance[s[0]][s[1]] + count < distance[x - dir[0]][y - dir[1]]) {
distance[x - dir[0]][y - dir[1]] = distance[s[0]][s[1]] + count;
queue.add(new int[] {x - dir[0], y - dir[1]});
}
}
}
return distance[dest[0]][dest[1]] == Integer.MAX_VALUE ? -1 : distance[dest[0]][dest[1]];
}
}Where and are the number of rows and columns in
maze.
class Solution {
public int shortestDistance(int[][] maze, int[] start, int[] dest) {
int[][] distance = new int[maze.length][maze[0].length];
boolean[][] visited = new boolean[maze.length][maze[0].length];
for (int[] row: distance)
Arrays.fill(row, Integer.MAX_VALUE);
distance[start[0]][start[1]] = 0;
dijkstra(maze, distance, visited);
return distance[dest[0]][dest[1]] == Integer.MAX_VALUE ? -1 : distance[dest[0]][dest[1]];
}
public int[] minDistance(int[][] distance, boolean[][] visited) {
int[] min={-1,-1};
int min_val = Integer.MAX_VALUE;
for (int i = 0; i < distance.length; i++) {
for (int j = 0; j < distance[0].length; j++) {
if (!visited[i][j] && distance[i][j] < min_val) {
min = new int[] {i, j};
min_val = distance[i][j];
}
}
}
return min;
}
public void dijkstra(int[][] maze, int[][] distance, boolean[][] visited) {
int[][] dirs={{0,1},{0,-1},{-1,0},{1,0}};
while (true) {
int[] s = minDistance(distance, visited);
if (s[0] < 0)
break;
visited[s[0]][s[1]] = true;
for (int[] dir: dirs) {
int x = s[0] + dir[0];
int y = s[1] + dir[1];
int count = 0;
while (x >= 0 && y >= 0 && x < maze.length && y < maze[0].length && maze[x][y] == 0) {
x += dir[0];
y += dir[1];
count++;
}
if (distance[s[0]][s[1]] + count < distance[x - dir[0]][y - dir[1]]) {
distance[x - dir[0]][y - dir[1]] = distance[s[0]][s[1]] + count;
}
}
}
}
}Where and are the number of rows and columns in
maze.
class Solution:
def shortestDistance(self, maze: List[List[int]], start: List[int], destination: List[int]) -> int:
distance = [[float('inf')] * len(maze[0]) for _ in range(len(maze))]
distance[start[0]][start[1]] = 0
self.dijkstra(maze, start, distance)
return -1 if distance[destination[0]][destination[1]] == float('inf') else distance[destination[0]][destination[1]]
def dijkstra(self, maze: List[List[int]], start: List[int], distance: List[List[int]]) -> None:
dirs = [[0, 1], [0, -1], [-1, 0], [1, 0]]
queue = []
heapq.heappush(queue, (0, start[0], start[1])) # (distance, x, y)
while queue:
dist, sx, sy = heapq.heappop(queue)
if distance[sx][sy] < dist:
continue
for dx, dy in dirs:
x, y = sx + dx, sy + dy
count = 0
while 0 <= x < len(maze) and 0 <= y < len(maze[0]) and maze[x][y] == 0:
x += dx
y += dy
count += 1
if distance[sx][sy] + count < distance[x - dx][y - dy]:
distance[x - dx][y - dy] = distance[sx][sy] + count
heapq.heappush(queue, (distance[x - dx][y - dy], x - dx, y - dy))Where and are the number of rows and columns in
maze.