You are given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: inorder = [2,1,3,4], postorder =
Output: [1,2,3,null,null,null,4]Example 2:
Input: inorder = [1], postorder = [1]
Output: [1]Constraints:
1 <= postorder.length == inorder.length <= 3000.-3000 <= inorder[i], postorder[i] <= 3000inorder and postorder consist of unique values.postorder also appears in inorder.inorder is guaranteed to be the inorder traversal of the tree.postorder is guaranteed to be the postorder traversal of the tree.# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
if not postorder or not inorder:
return None
root = TreeNode(postorder[-1])
mid = inorder.index(postorder[-1])
root.left = self.buildTree(inorder[:mid], postorder[:mid])
root.right = self.buildTree(inorder[mid + 1:], postorder[mid:-1])
return root# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
inorderIdx = {v: i for i, v in enumerate(inorder)}
def dfs(l, r):
if l > r:
return None
root = TreeNode(postorder.pop())
idx = inorderIdx[root.val]
root.right = dfs(idx + 1, r)
root.left = dfs(l, idx - 1)
return root
return dfs(0, len(inorder) - 1)# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
postIdx = inIdx = len(postorder) - 1
def dfs(limit):
nonlocal postIdx, inIdx
if postIdx < 0:
return None
if inorder[inIdx] == limit:
inIdx -= 1
return None
root = TreeNode(postorder[postIdx])
postIdx -= 1
root.right = dfs(root.val)
root.left = dfs(limit)
return root
return dfs(float('inf'))