# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
if not root1 or not root2:
return not root1 and not root2
if root1.val != root2.val:
return False
return (
self.flipEquiv(root1.left, root2.left) and
self.flipEquiv(root1.right, root2.right) or
self.flipEquiv(root1.left, root2.right) and
self.flipEquiv(root1.right, root2.left)
)# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
q = deque([(root1, root2)])
while q:
node1, node2 = q.popleft()
if not node1 or not node2:
if node1 != node2:
return False
continue
if node1.val != node2.val:
return False
if ((node1.right and node2.right and
node1.right.val == node2.right.val) or
(not node1.right and not node2.right)
):
q.append((node1.left, node2.left))
q.append((node1.right, node2.right))
else:
q.append((node1.left, node2.right))
q.append((node1.right, node2.left))
return True# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
stack = [(root1, root2)]
while stack:
node1, node2 = stack.pop()
if not node1 or not node2:
if node1 != node2:
return False
continue
if node1.val != node2.val:
return False
if ((node1.left and node2.left and
node1.left.val == node2.left.val) or
(not node1.left and not node2.left)
):
stack.append((node1.left, node2.left))
stack.append((node1.right, node2.right))
else:
stack.append((node1.left, node2.right))
stack.append((node1.right, node2.left))
return True