# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
def dfs(root, leaf):
if not root:
return
if not root.left and not root.right:
leaf.append(root.val)
return
dfs(root.left, leaf)
dfs(root.right, leaf)
leaf1, leaf2 = [], []
dfs(root1, leaf1)
dfs(root2, leaf2)
return leaf1 == leaf2Where and are the number of nodes in the given trees.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
def dfs(root, leaf):
if not root:
return
if not root.left and not root.right:
leaf.append(root.val)
return
dfs(root.left, leaf)
dfs(root.right, leaf)
leaf1 = []
dfs(root1, leaf1)
def dfs1(root, leaf):
if not root:
return True
if not root.left and not root.right:
if not leaf:
return False
return leaf.pop() == root.val
return dfs1(root.right, leaf) and dfs1(root.left, leaf)
return dfs1(root2, leaf1) and not leaf1Where and are the number of nodes in the given trees.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
def getPathLeaf(stack):
while stack:
node = stack.pop()
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
if not node.left and not node.right:
return node.val
stack1, stack2 = [root1], [root2]
while stack1 and stack2:
if getPathLeaf(stack1) != getPathLeaf(stack2):
return False
return not stack1 and not stack2Where and are the number of nodes in the given trees.