# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def largestValues(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
res = []
q = deque([root])
while q:
row_max = q[0].val
for _ in range(len(q)):
node = q.popleft()
row_max = max(row_max, node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
res.append(row_max)
return res# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def largestValues(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
res = []
def dfs(node, level):
if not node:
return
if level == len(res):
res.append(node.val)
else:
res[level] = max(res[level], node.val)
dfs(node.left, level + 1)
dfs(node.right, level + 1)
dfs(root, 0)
return res# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def largestValues(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
res = []
stack = [(root, 0)]
while stack:
node, level = stack.pop()
if level == len(res):
res.append(node.val)
else:
res[level] = max(res[level], node.val)
if node.right:
stack.append((node.right, level + 1))
if node.left:
stack.append((node.left, level + 1))
return res