Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.int next() Moves the pointer to the right, then returns the number at the pointer.Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.
You may assume that next() calls will always be valid. That is, there will be at least a next number in the in-order traversal when next() is called.
Example 1:
Input: ["BSTIterator","next","next","hasNext","next","hasNext","next","hasNext","next","hasNext"], [[[7,3,15,null,null,9,20]],[],[],[],[],[],[],[],[],[]]
Output: [null,3,7,true,9,true,15,true,20,false]Explanation:
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // return 3
bSTIterator.next(); // return 7
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 9
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 15
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 20
bSTIterator.hasNext(); // return False
Constraints:
1 <= The number of nodes in the tree <= 100,000.0 <= Node.val <= 1,000,000100,000 calls will be made to hasNext, and next.Follow up:
next() and hasNext() to run in average O(1) time and use O(h) memory, where h is the height of the tree?# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.arr = []
self.itr = 0
def dfs(node):
if not node:
return
dfs(node.left)
self.arr.append(node.val)
dfs(node.right)
dfs(root)
def next(self) -> int:
val = self.arr[self.itr]
self.itr += 1
return val
def hasNext(self) -> bool:
return self.itr < len(self.arr)# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.arr = []
self.itr = 0
stack = []
while root or stack:
while root:
stack.append(root)
root = root.left
root = stack.pop()
self.arr.append(root.val)
root = root.right
def next(self) -> int:
val = self.arr[self.itr]
self.itr += 1
return val
def hasNext(self) -> bool:
return self.itr < len(self.arr)# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.stack = []
while root:
self.stack.append(root)
root = root.left
def next(self) -> int:
res = self.stack.pop()
cur = res.right
while cur:
self.stack.append(cur)
cur = cur.left
return res.val
def hasNext(self) -> bool:
return bool(self.stack)Where is the number of nodes and is the height of the given tree.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class BSTIterator:
def __init__(self, root: Optional[TreeNode]):
self.cur = root
self.stack = []
def next(self) -> int:
while self.cur:
self.stack.append(self.cur)
self.cur = self.cur.left
node = self.stack.pop()
self.cur = node.right
return node.val
def hasNext(self) -> bool:
return bool(self.cur) or bool(self.stack)Where is the number of nodes and is the height of the given tree.