Design and implement circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle, and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implement the MyCircularQueue class:
MyCircularQueue(k) Initializes the object with the size of the queue to be k.int Front() Gets the front item from the queue. If the queue is empty, return -1.int Rear() Gets the last item from the queue. If the queue is empty, return -1.boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.boolean isEmpty() Checks whether the circular queue is empty or not.boolean isFull() Checks whether the circular queue is full or not.Example 1:
Input: ["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output: [null, true, true, true, false, 3, true, true, true, 4]Explanation:
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 1000.0 <= value <= 10003000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.class MyCircularQueue:
def __init__(self, k: int):
self.q = []
self.k = k
def enQueue(self, value: int) -> bool:
if len(self.q) == self.k:
return False
self.q.append(value)
return True
def deQueue(self) -> bool:
if not self.q:
return False
self.q.pop(0)
return True
def Front(self) -> int:
if self.q:
return self.q[0]
return -1
def Rear(self) -> int:
if self.q:
return self.q[-1]
return -1
def isEmpty(self) -> bool:
return len(self.q) == 0
def isFull(self) -> bool:
return len(self.q) == self.kWhere is the size of the queue.
class MyCircularQueue:
def __init__(self, k: int):
self.q = [0] * k
self.k = k
self.front = 0
self.rear = -1
self.size = 0
def enQueue(self, value: int) -> bool:
if self.isFull():
return False
self.rear = (self.rear + 1) % self.k
self.q[self.rear] = value
self.size += 1
return True
def deQueue(self) -> bool:
if self.isEmpty():
return False
self.front = (self.front + 1) % self.k
self.size -= 1
return True
def Front(self) -> int:
if self.isEmpty():
return -1
return self.q[self.front]
def Rear(self) -> int:
if self.isEmpty():
return -1
return self.q[self.rear]
def isEmpty(self) -> bool:
return self.size == 0
def isFull(self) -> bool:
return self.size == self.kWhere is the size of the queue.
class ListNode:
def __init__(self, val, nxt, prev):
self.val, self.next, self.prev = val, nxt, prev
class MyCircularQueue:
def __init__(self, k: int):
self.space = k
self.left = ListNode(0, None, None)
self.right = ListNode(0, None, self.left)
self.left.next = self.right
def enQueue(self, value: int) -> bool:
if self.isFull(): return False
cur = ListNode(value, self.right, self.right.prev)
self.right.prev.next = cur
self.right.prev = cur
self.space -= 1
return True
def deQueue(self) -> bool:
if self.isEmpty(): return False
self.left.next = self.left.next.next
self.left.next.prev = self.left
self.space += 1
return True
def Front(self) -> int:
if self.isEmpty(): return -1
return self.left.next.val
def Rear(self) -> int:
if self.isEmpty(): return -1
return self.right.prev.val
def isEmpty(self) -> bool:
return self.left.next == self.right
def isFull(self) -> bool:
return self.space == 0Where is the size of the queue.
class ListNode:
def __init__(self, val, nxt=None):
self.val = val
self.next = nxt
class MyCircularQueue:
def __init__(self, k: int):
self.space = k
self.left = ListNode(0)
self.right = self.left
def enQueue(self, value: int) -> bool:
if self.isFull(): return False
cur = ListNode(value)
if self.isEmpty():
self.left.next = cur
self.right = cur
else:
self.right.next = cur
self.right = cur
self.space -= 1
return True
def deQueue(self) -> bool:
if self.isEmpty(): return False
self.left.next = self.left.next.next
if self.left.next is None:
self.right = self.left
self.space += 1
return True
def Front(self) -> int:
if self.isEmpty(): return -1
return self.left.next.val
def Rear(self) -> int:
if self.isEmpty(): return -1
return self.right.val
def isEmpty(self) -> bool:
return self.left.next is None
def isFull(self) -> bool:
return self.space == 0Where is the size of the queue.