A peak element is an element that is strictly greater than its neighbors.
You are given a 0-indexed integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞. In other words, an element is always considered to be strictly greater than a neighbor that is outside the array.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [1,2,3,1]
Output: 2Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,4,5,0]
Output: 5Explanation: 5 is a peak element and your function should return the index number 5.
Constraints:
1 <= nums.length <= 1000.-(2^31) <= nums[i] <= ((2^31)-1)nums[i] != nums[i + 1] for all valid i.class Solution:
def findPeakElement(self, nums: List[int]) -> int:
for i in range(len(nums) - 1):
if nums[i] > nums[i + 1]:
return i
return len(nums) - 1class Solution:
def findPeakElement(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l <= r:
m = l + (r - l) // 2
if m > 0 and nums[m] < nums[m - 1]:
r = m - 1
elif m < len(nums) - 1 and nums[m] < nums[m + 1]:
l = m + 1
else:
return mclass Solution:
def findPeakElement(self, nums: List[int]) -> int:
def binary_search(l, r):
if l == r:
return l
m = l + (r - l) // 2
if nums[m] > nums[m + 1]:
return binary_search(l, m)
return binary_search(m + 1, r)
return binary_search(0, len(nums) - 1)class Solution:
def findPeakElement(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
m = (l + r) >> 1
if nums[m] > nums[m + 1]:
r = m
else:
l = m + 1
return l