You are given two binary trees root1 and root2.
Imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge the two trees into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of the new tree.
Return the merged tree.
Note: The merging process must start from the root nodes of both trees.
Example 1:
Input: root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
Output: [3,4,5,5,4,null,7]Example 2:
Input: root1 = [1], root2 = [2]
Output: [3]Example 3:
Input: root1 = [], root2 = [2]
Output: [2]Constraints:
0 <= The number of nodes in both the trees <= 2000.-10,000 <= Node.val <= 10,000# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1 and not root2:
return None
v1 = root1.val if root1 else 0
v2 = root2.val if root2 else 0
root = TreeNode(v1 + v2)
root.left = self.mergeTrees(root1.left if root1 else None, root2.left if root2 else None)
root.right = self.mergeTrees(root1.right if root1 else None, root2.right if root2 else None)
return rootWhere and are the number of nodes in the given trees.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1:
return root2
if not root2:
return root1
root1.val += root2.val
root1.left = self.mergeTrees(root1.left, root2.left)
root1.right = self.mergeTrees(root1.right, root2.right)
return root1Where and are the number of nodes in the given trees.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1:
return root2
if not root2:
return root1
root = TreeNode(root1.val + root2.val)
stack = [(root1, root2, root)]
while stack:
node1, node2, node = stack.pop()
if node1.left and node2.left:
node.left = TreeNode(node1.left.val + node2.left.val)
stack.append((node1.left, node2.left, node.left))
elif not node1.left:
node.left = node2.left
else:
node.left = node1.left
if node1.right and node2.right:
node.right = TreeNode(node1.right.val + node2.right.val)
stack.append((node1.right, node2.right, node.right))
elif not node1.right:
node.right = node2.right
else:
node.right = node1.right
return rootWhere and are the number of nodes in the given trees.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1:
return root2
if not root2:
return root1
stack = [(root1, root2)]
while stack:
node1, node2 = stack.pop()
if not node1 or not node2:
continue
node1.val += node2.val
if node1.left and node2.left:
stack.append((node1.left, node2.left))
elif not node1.left:
node1.left = node2.left
if node1.right and node2.right:
stack.append((node1.right, node2.right))
elif not node1.right:
node1.right = node2.right
return root1Where and are the number of nodes in the given trees.