1. Recursion

class Solution:
    def numDecodings(self, s: str) -> int:

        def dfs(i):
            if i == len(s):
                return 1
            if s[i] == '0':
                return 0

            res = dfs(i + 1)
            if i < len(s) - 1:
                if (s[i] == '1' or
                   (s[i] == '2' and s[i + 1] < '7')):
                    res += dfs(i + 2)

            return res

        return dfs(0)

Time & Space Complexity

  • Time complexity: O(2n)O(2 ^ n)
  • Space complexity: O(n)O(n)

2. Dynamic Programming (Top-Down)

class Solution:
    def numDecodings(self, s: str) -> int:
        dp = {len(s) : 1}

        def dfs(i):
            if i in dp:
                return dp[i]
            if s[i] == "0":
                return 0

            res = dfs(i + 1)
            if i + 1 < len(s) and (
                s[i] == "1" or s[i] == "2" and
                s[i + 1] in "0123456"
            ):
                res += dfs(i + 2)
            dp[i] = res
            return res

        return dfs(0)

Time & Space Complexity

  • Time complexity: O(n)O(n)
  • Space complexity: O(n)O(n)

3. Dynamic Programming (Bottom-Up)

class Solution:
    def numDecodings(self, s: str) -> int:
        dp = {len(s): 1}
        for i in range(len(s) - 1, -1, -1):
            if s[i] == "0":
                dp[i] = 0
            else:
                dp[i] = dp[i + 1]

            if i + 1 < len(s) and (s[i] == "1" or
               s[i] == "2" and s[i + 1] in "0123456"
            ):
                dp[i] += dp[i + 2]
        return dp[0]

Time & Space Complexity

  • Time complexity: O(n)O(n)
  • Space complexity: O(n)O(n)

4. Dynamic Programming (Space Optimized)

class Solution:
    def numDecodings(self, s: str) -> int:
        dp = dp2 = 0
        dp1 = 1
        for i in range(len(s) - 1, -1, -1):
            if s[i] == "0":
                dp = 0
            else:
                dp = dp1

            if i + 1 < len(s) and (s[i] == "1" or
               s[i] == "2" and s[i + 1] in "0123456"
            ):
                dp += dp2
            dp, dp1, dp2 = 0, dp, dp1
        return dp1

Time & Space Complexity

  • Time complexity: O(n)O(n)
  • Space complexity: O(1)O(1)