721. Accounts Merge - Explanation

Problem Link

Description

Given a list of accounts where each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some common email to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.

After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.

Example 1:

Input: accounts = [
    ["neet","neet@gmail.com","neet_dsa@gmail.com"],
    ["alice","alice@gmail.com"],
    ["neet","bob@gmail.com","neet@gmail.com"],
    ["neet","neetcode@gmail.com"]
]

Output: [["neet","bob@gmail.com","neet@gmail.com","neet_dsa@gmail.com"],["alice","alice@gmail.com"],["neet","neetcode@gmail.com"]]

Example 2:

Input: accounts = [
    ["James","james@mail.com"],
    ["James","james@mail.co"]
]

Output: [["James","james@mail.com"],["James","james@mail.co"]]

Constraints:

  • 1 <= accounts.length <= 1000
  • 2 <= accounts[i].length <= 10
  • 1 <= accounts[i][j].length <= 30
  • accounts[i][0] consists of English letters.
  • accounts[i][j] (for j > 0) is a valid email.

Company Tags

Please upgrade to NeetCode Pro to view company tags.



class Solution:
    def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]:
        n = len(accounts)
        emailIdx = {} # email -> id
        emails = [] # set of emails of all accounts
        emailToAcc = {} # email_index -> account_Id

        m = 0
        for accId, a in enumerate(accounts):
            for i in range(1, len(a)):
                email = a[i]
                if email in emailIdx:
                    continue
                emails.append(email)
                emailIdx[email] = m
                emailToAcc[m] = accId
                m += 1

        adj = [[] for _ in range(m)]
        for a in accounts:
            for i in range(2, len(a)):
                id1 = emailIdx[a[i]]
                id2 = emailIdx[a[i - 1]]
                adj[id1].append(id2)
                adj[id2].append(id1)

        emailGroup = defaultdict(list) # index of acc -> list of emails
        visited = [False] * m
        def dfs(node, accId):
            visited[node] = True
            emailGroup[accId].append(emails[node])
            for nei in adj[node]:
                if not visited[nei]:
                    dfs(nei, accId)

        for i in range(m):
            if not visited[i]:
                dfs(i, emailToAcc[i])

        res = []
        for accId in emailGroup:
            name = accounts[accId][0]
            res.append([name] + sorted(emailGroup[accId]))

        return res

Time & Space Complexity

  • Time complexity: O((nm)log(nm))O((n * m)\log (n * m))
  • Space complexity: O(nm)O(n * m)

Where nn is the number of accounts and mm is the number of emails.


class Solution:
    def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]:
        n = len(accounts)
        emailIdx = {} # email -> id
        emails = [] # set of emails of all accounts
        emailToAcc = {} # email_index -> account_Id

        m = 0
        for accId, a in enumerate(accounts):
            for i in range(1, len(a)):
                email = a[i]
                if email in emailIdx:
                    continue
                emails.append(email)
                emailIdx[email] = m
                emailToAcc[m] = accId
                m += 1

        adj = [[] for _ in range(m)]
        for a in accounts:
            for i in range(2, len(a)):
                id1 = emailIdx[a[i]]
                id2 = emailIdx[a[i - 1]]
                adj[id1].append(id2)
                adj[id2].append(id1)

        emailGroup = defaultdict(list) # index of acc -> list of emails
        visited = [False] * m

        def bfs(start, accId):
            queue = deque([start])
            visited[start] = True
            while queue:
                node = queue.popleft()
                emailGroup[accId].append(emails[node])
                for nei in adj[node]:
                    if not visited[nei]:
                        visited[nei] = True
                        queue.append(nei)

        for i in range(m):
            if not visited[i]:
                bfs(i, emailToAcc[i])

        res = []
        for accId in emailGroup:
            name = accounts[accId][0]
            res.append([name] + sorted(emailGroup[accId]))

        return res

Time & Space Complexity

  • Time complexity: O((nm)log(nm))O((n * m)\log (n * m))
  • Space complexity: O(nm)O(n * m)

Where nn is the number of accounts and mm is the number of emails.


3. Disjoint Set Union

class UnionFind:
    def __init__(self, n):
        self.par = [i for i in range(n)]
        self.rank = [1] * n

    def find(self, x):
        while x != self.par[x]:
            self.par[x] = self.par[self.par[x]]
            x = self.par[x]
        return x

    def union(self, x1, x2):
        p1, p2 = self.find(x1), self.find(x2)
        if p1 == p2:
            return False
        if self.rank[p1] > self.rank[p2]:
            self.par[p2] = p1
            self.rank[p1] += self.rank[p2]
        else:
            self.par[p1] = p2
            self.rank[p2] += self.rank[p1]
        return True

class Solution:
    def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]:
        uf = UnionFind(len(accounts))
        emailToAcc = {}  # email -> index of acc

        for i, a in enumerate(accounts):
            for e in a[1:]:
                if e in emailToAcc:
                    uf.union(i, emailToAcc[e])
                else:
                    emailToAcc[e] = i

        emailGroup = defaultdict(list)  # index of acc -> list of emails
        for e, i in emailToAcc.items():
            leader = uf.find(i)
            emailGroup[leader].append(e)

        res = []
        for i, emails in emailGroup.items():
            name = accounts[i][0]
            res.append([name] + sorted(emailGroup[i]))
        return res

Time & Space Complexity

  • Time complexity: O((nm)log(nm))O((n * m)\log (n * m))
  • Space complexity: O(nm)O(n * m)

Where nn is the number of accounts and mm is the number of emails.